Фізика і астрономія 11 клас


Фізика і астрономія 11 клас
24.04
Тема: Будова сонячної атмосфери. Прояви сонячної активності та їх вплив на Землю.
Перегляньте відео за посиланням https://www.youtube.com/watch?v=r06z4zLAPu0
Атмосфера Сонця
   Сонячну атмосферу можна умовно поділити на кілька шарів.

Фотосфера
   Найглибший шар атмосфери, товщиною 200–300 км, називається фотосферою (сфера світла). З нього випромінюється майже вся енергія, яка спостерігається у видимій частині спектра, вона утворює видиму поверхню Сонця. Її товщина відповідає оптичній товщині приблизно у 2/3. Температура із наближенням до зовнішнього краю фотосфери зменшується з 6600 К до 4400 К, зовнішні шари фотосфери охолоджуються внаслідок випромінювання в міжпланетний простір.
На фотографіях фотосфери добре помітно її тонку структуру у вигляді яскравих «зернят» — гранул розміром близько 1000 км, розмежованих вузькими темними проміжками. Ця структура називається грануляцією. Вона є результатом руху газів, який відбувається в розташованій під атмосферою конвективній зоні Сонця.
    Ефективна температура фотосфери в цілому становить 5778 К. Вона може бути розрахована за законом Стефана — Больцмана, за яким потужність випромінювання абсолютно чорного тіла прямо пропорційна четвертому ступеню температури тіла. Водень за таких умов майже повністю перебуває в нейтральному стані. Фотосфера утворює видиму поверхню Сонця, від якої визначаються розміри Сонця, відстань від поверхні Сонця і т. д. Оскільки газ у фотосфері є доволі розрідженим, то швидкість його обертання багато менша швидкості обертання твердих тіл. При цьому газ в екваторіальній і полярних областях, рухається нерівномірно — на екваторі він здійснює оберт за 24 дні, на полюсах — за 30 днів.
   У спектрі видимого випромінювання Сонця, що майже цілком утворюється у фотосфері, зниженню температури у зовнішніх шарах відповідають темні лінії поглинання. Вони називаються фраунгоферовими на честь німецького оптика Й. Фраунгофера (1787–1826), який уперше 1814 року замалював кілька сотень таких ліній. З тієї ж причини (зниження температури від центра Сонця) сонячний диск ближче до краю здається темнішим.
    Часом у деяких ділянках фотосфери темні проміжки між гранулами збільшуються, утворюються невеликі круглі пори, деякі з них розвиваються у великі темні плями, оточені напівтінню, що складається з довгастих, радіально витягнутих фотосферних гранул.
300px-171879main_LimbFlareJan12_lg
Рис.1.2.  Плазма ниткоподібної форми, що з'єднує регіони з різною магнітною полярністю.
(Фото з оптичного телескопа на супутнику Hinode, 12.01.2007)

Хромосфера і корона Сонця
       У найвищих шарах фотосфери температура становить близько 4000 К. За такої температури та густини 10−3—10−4 кг/м³ водень стає практично нейтральним. Іонізовано лише близько 0,01% атомів, здебільшого металів.
Однак вище в атмосфері температура, а разом з нею й іонізація, знову починають підвищуватися, спочатку повільно, а потім дуже швидко. Частина сонячної атмосфери, в якій підвищується температура й послідовно іонізуються водень, гелій та інші елементи, називається хромосферою, її температура становить десятки й сотні тисяч кельвінів. У вигляді блискучої рожевої облямівки хромосферу видно навколо темного диска Місяця в нечасті моменти повних сонячних затемнень. Вище від хромосфери температура сонячних газів становить 106 — 2×106 К і далі протягом багатьох радіусів Сонця майже не змінюється.
   Ця розріджена й гаряча оболонка називається сонячною короною. У вигляді променистого перлового сяйва її можна спостерігати під час повної фази затемнення Сонця, тоді вона являє надзвичайно гарне видовище. «Випаровуючись» у міжпланетний простір, газ корони утворює потік гарячої розрідженої плазми, що постійно тече від Сонця й називається сонячним вітром.. Корона в основному складається з протуберанців та енергетичних вивержень, що вириваються й вивергаються на кілька сотень, а інколи навіть на відстань більше мільйона кілометрів у простір, утворюючи таким чином сонячний вітер. Середня корональна температура становить від 1 до 2 млн К, а максимальна, в окремих ділянках, — до 20 млн К.
   Надзвичайно інтенсивний нагрів цього шару викликано, мабуть, ефектом магнітного перез'єднання і впливом ударних хвиль. Форма корони змінюється в залежності від фази циклу сонячної активності: у періоди максимальної активності вона має округлу форму, а в мінімумі — витягнута уздовж сонячного екватора. Оскільки температура корони дуже висока, вона інтенсивно випромінює в ультрафіолетовому й рентгенівському діапазонах. Це випромінювання поглинається земною атмосферою, але останнім часом з'явилася можливість вивчати його за допомогою космічних апаратів. Випромінювання на різних ділянках корони відбувається нерівномірно. Існують гарячі активні та спокійні ділянки, а також корональні діри із порівняно невисокою температурою в 600 000 К, з яких у простір виходять магнітні силові лінії. Така («відкрита») магнітна конфігурація дозволяє частинкам залишати Сонце, тому сонячний вітер випромінюється здебільшого з корональних дір.
   Видимий спектр сонячної корони складається з трьох різних складових, названих L, K і F компонентами (або, відповідно, L-корона, K-корона і F-корона; ще одна назва L-компоненти — E-корона. K-компонента — неперервний спектр корони. На його тлі до висоти 9-10' від видимого краю Сонця видно емісійну L-компоненту. Починаючи з висоти близько 3' (кутовий діаметр Сонця — близько 30') і вище видно Фраунгоферовий спектр, такий же як і спектр фотосфери. Він становить F-компоненту сонячної корони. На висоті 20' F-компонента домінує в спектрі корони. Висота 9-10' вважається межею, що відокремлює внутрішню корону від зовнішньої. Випромінювання Сонця з довжиною хвилі менше 20 нм, повністю виходить з корони. Це означає, що, наприклад, на поширених знімках Сонця на довжинах хвиль 17,1 нм (171 Å), 19,3 нм (193 Å), 19,5 нм (195 Å), видно виключно сонячну корону з її елементами, а хромосферу та фотосферу — не видно. Дві корональні діри майже завжди наявні біля північного і південного полюсів Сонця, а інші лише тимчасово з'являються на його видимій поверхні, і практично зовсім не випромінюють рентгенівське випромінювання.

200px-Solar_eclipse_1999_4
Рис.1.3.  Сонячна корона під час сонячного затемнення 1999 року
  185px-Sun%27s_Quiet_Corona
Рис.1.4.  Знімок Сонця 9 квітня 2013 року на довжині хвилі 17 нм. Зображення від NASA/SDO

   Хромосферу та корону найкраще спостерігати з супутників та орбітальних космічних станцій в ультрафіолетових і рентгенівських променях.

Історія вивчення сонячної активності
Найбільш вивчений вид сонячної активності - зміна числа сонячних плям. Перші повідомлення про їх спостереження датуються 800 р. до н.е. в Китаї, перші малюнки -1128 р. З 1610 року астрономи почали застосовувати телескопи для спостереженням за сонячними плямами, однак фізична природа плям залишалася незрозумілою до ХХ ст. У XV і XVI ст. спостерігалася низька сонячна активність - Мінімум Маундера. 1845 року професори Д.Генри і С.Александер з Прінстонського університету спостерігали Сонце за допомогою термометра і виявили, що плями випромінюють менше порівняно з іншими ділянками сонячної поверхні. Пізніше було виявлено, що більше випромінювання мають сонячні факели.
   Зв'язок сонячної активності та клімату Землі досліджується з 1900 р. Ч.Г.Аббот із Смітсоніанської астрофізичної обсерваторії (САО) вивчав активність Сонця і заснував сонячну обсерватарію в Калама (Чилі). Дослідження проводилися і в Маунт-Вільсон. Результат цієї роботи - виділення 27 гармонічних періодів сонячної активності в межах циклу Хейла, зокрема цикли з періодом 7, 13 і 39 місяців. Також простежувався зв'язок цих періодів з погодою шляхом складання сонячних трендів з температурою і рівнем осадів у містах. З виділенням науки дендрохронології почали відшукувати зв'язок сонячної активності та швидкості росту дерев. Статистичні дослідження зв'язку сонячної активності та погоди і клімату з були популярними з 1801, коли В.Гершель помітив зв'язок між сонячними плямами і цінами на пшеницю.
    Сьогодні цей зв'язок досліджують за допомогою штучних супутників Землі і сучасної досконалої астрономічної апаратури
Вплив сонячної активності на нашу планету
Вплив сонячної активності на погоду та клімат Землі
   Встановлено, що крім екваторіального кільцевого струму, в районах геомагнітних полюсів на віддалі 20 вночі та 10° удень на висоті близько 100 км приблизно вздовж магнітних паралелей також тече електричний струм. Після надходження від Сонця посиленого потоку заряджених частинок деяка їхня кількість затримується у високих широтах і підсилює цю течію. Збільшення струму призводить до додаткового розігріву атмосфери. Від місця розігріву вниз до тропосфери проникає хвилеподібний імпульс, який далі вздовж поверхні Землі поширюється впродовж кількох годин до низьких широт . Ці хвилі є тим енергетичним мостом між іоносферою і тропосферою, який передає енергію корпускулярних сонячних потоків погодному шару повітря. Вони підсилюють меридіональну циркуляцію повітря і зменшують зональну. Там, де тиск був низьким, він стає ще нижчим, а де був високим - ще вищим. За таких умов у тропічній зоні народжуються тайфуни, а у місцях з різко вираженим континентальним кліматом - засухи.
У ритмі з циклами сонячної активності настають певні коливання клімату Землі. У тисячолітньому циклі істотно коливається рівень води в озерах і морях, що видно на наступному прикладі [5,7]. У V ст. н. е. на березі Каспійського моря були збудовані порт Дербент і фортеця. Тепер залишки її стін перебувають на глибині близько 5 м, а в ХІ-ХІУ ст. ця глибина сягала 8 м.
Сонячна активність і біосфера Землі
  Впливаючи на погоду і клімат, сонячна активність не може не впливати на рослинний світ. Було зібрано багато зрізів дерев з чітко вираженими річними кільцями. Серед них були зрізи секвойї віком 3 200 років і дев'ятнадцяти 500-річних дерев. У всіх дерев визначали товщину річних кілець з точністю до 0,01 мм. Виявилося, що в роки максимумів сонячної активності приріст дерев був більшим, ніж у роки мінімумів [9]. А те, що врожайність сільськогосподарських культур і відповідно ціни на них співвідносяться з кількістю сонячних плям, стало вже класичним прикладом.
 
image045image047
Рис.3.1.Вплив сонячної активності на нашу планету
Сонячна активність і тваринний світ
   Тісно пов'язані з 11-річним циклом періоди підвищеного розмноження каракуртів, бліх, пустельної саранчі тощо. Останні в періоди між піками сонячної активності взагалі не можна виявити [8]. До тваринного світу належать бактерії та віруси, що спричиняють різноманітні захворювання у людей і тварин. Через зміну їхньої чисельності та поведінки сонячна активність впливає на поширення епідемій і пандемій (розповсюдження хвороби на цілі країни та материки), а також на поширення епізоотій (масових захворювань тварин). Як показав О. Чижевський, у роки високої сонячної активності виникають пандемії холери, грипу, дизентерії, дифтерії тощо.
Вплив сонячної активності на людину
Численні дослідження показали, що найчутливішими до змін напруженості геомагнітного поля, обумовлених сонячною активністю, є нервова і серцево-судинна системи людини [4]. Вплив виявляється по-різному: через зміну електричних властивостей тканин людського організму; через вільні радикали у клітинах; через індукційні струми, що виникають в організмі під впливом геомагнітних полів; через зміну проникності клітинних мембран тощо. Як наслідок, у людей з хворобами серцево-судинної системи під час геомагнітних бур погіршується стан, збільшується число інфарктів та інсультів. У здорових людей змінюється сприйняття часу, сповільнюється рухова реакція, різко знижується короткочасна пам'ять, об'єм та інтенсивність уваги. Навіть у спеціально тренованих людей - спортсменів вищого класу та льотчиків — зафіксовано підвищену кількість помилок при виконанні контрольних завдань. Різкі й часті збільшення збуреності геомагнітного поля, впливаючи на візерунок біопотенціалів мозку, погіршують сон.
    Все це відбивається на виконанні робіт, які вимагають точності та уваги, спричиняє збільшення травматизму на виробництві та кількості автотранспортних пригод. А люди з порушеннями функцій головного мозку в такі дні часто потрапляють на лікарняне ліжко.
Сонячна активність впливає на систему крові людини
  Під час геомагнітних бур швидкість згортання крові зменшується на 8%. А кількість білих кров'яних тілець - лейкоцитів, від яких, як відомо, залежить опірність організму різним інфекційним захворюванням, у роки активного Сонця знижується в 1,5-1,7 раза. Так що поширеність епідемій у цей час може залежати не лише від посилення діяльності патогенних мікроорганізмів. Отже, можна з упевненістю сказати, що ізоляція біосфери від дії космічних чинників відносна [3]. Біосфера дуже чуйно реагує на зміну параметрів зовнішнього середовища. У зв'язку з цим дуже важливо вести регулярні спостереження за Сонцем і вміти аналізувати різні явища на ньому. Саме цим і займаються багато обсерваторій світу
     Загальне число плям та утворених ними груп повільно змінюється протягом деякого періоду часу (циклу) від 8 до 15 років (у середньому 10-11 років). Важливо, що наявність плям на Сонці впливає на магнітне поле Землі. Це було відмічено Горребовим ще в 18 ст., а зараз вже відомо, що сонячна активність пов'язана з дуже багатьма земними явищами, так що вивчення сонячно-земних зв'язків дуже важливе для практичного життя. Тому необхідні безперервні та постійні спостереження Сонця.
Домашнє завдання
1)    Зайти на блог «Сонце – центр Сонячної системи» за адресою   http://gopkoz.blogspot.com/p/blog-page_92.html  і виконати тест з теми «Сонце та його активність», надіславши відповіді до наступного уроку.
2)    Підготувати короткі повідомлення із мультимедійним супроводом на 5 хв. по темам (Прізвища учнів)
а)     Діаграма спектр-світність, перебування зорі на головній послідов­ності;
б)    Загальні харак­теристики зір;
в)     Нові та наднові зорі, пульсари;
г)     Формування зорі, заключні етапи існування зорі.
Виконайте  завдання та перешліть на електронну адресу captatana5@gmail.com

Коментарі

Популярні дописи з цього блогу

Фізика 9 клас

Фізика і астрономія 11 клас

10 клас Хімія